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TECHNICAL NOTE 2892

A RAPTD METHOD FOR ESTIMATING THE SEPARATION POINT OF A
COMPRESSIBLE LAMINAR BOUNDARY LAYER

By Laurence K. Loftin, Jr., and Homer B. Wilson, Jr.
SUMMARY

A method has been developed for rapidly estimating the separation
point of a laminar boundary layer in a compressible flow. The method
consists of an extension of Von Doenhoff's simplified solution for the
incompressible case (NACA TN 671) and makes use of a set of transforms
derived by Stewartson (Proc. Roy. Soc., 1949) which permit, under cer-
tain assumptions, the expression of compressible laminar layers in terms
of equlivalent incompressible laminar layers. The method developed is
generally applicable to any two-dimensional flow in which the classical
boundary-layer assumptions are satisfied. The dependence of the method
upon the boundary-layer assumptions, of course, means that it should
not be applied to determlne whether the pressure rise through a shock
wave causes separation.

Calculations of the laminar separation point for a wide range of
Mach number and velocity gradient indicate that, for all velocity gra-
dients, the amount of velocity recovery possible before laminar separa-
tion occurs decreases as the Mach number increases.

INTRODUCTION

The determination of the position at which the laminar boundary
layer separates has been the subject of much theoretical investigation.
For the case of incompressible flow, such methods as those of Howarth
(ref. 1), Von Kermsn and Millikan (ref. 2), and Von Doenhoff's simpli-
fied adaptation of the Von Kermen-Milliken theory (ref. 3) may be used
for determining the leminar separation point on bodies with velocity
distributions of arbltrary shape.

For the case of compressible flows, several investigators have been
interested in determining the basic nature of the effect of Mach number
on the leminar separation point. Such methods as those of Howarth (ref. L)
and Cope and Hartree (ref. 5) provide means for determining the laminar
separation point in a compressible flow. These methods are rather
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cumbersome, however, and are not readily adaptable for rapidly estimating
the effect of Mach number and velocity gredient on laminar separation.
Stewartson (ref. 6) has recently shown thet a vast simplification in

the theory of compressible laminar boundary lsyers is possible if cer-
tain rather reasonable simplifying assumptions are made. On the basis

of these assumptions, he was gble to develop transforms which express

the compressible laminar boundary layer in terms of an equivalent
incompressible leminar boundary layer.

In the present paper the method of Von Doenhoff has been combined
with Stewartson's transforms to provide a means for rapidly estimating
the separation point of a laminar boundary layer in a compressible flow.
The method developed 1s generally appliceble to any two-dimensional flow
in which the classical boundary-layer assumptions are satisfied. With
the use of the method developed, the effect of Mach number on the laminar
separation point has been calculated for a wide range of Mach number and
velocity gradient. The results of these calculations are presented.

SYMBOLS
c reference length
X abscissa
y ordinate

equivalent flat-plate length

a speed of sound

U velocity Jjust outside boundary layer

u velocity inside boundary layer

M Mach number

F nondimensional velocity gradient, L EH
Uo dx

Cp specific heat at constant pressure

Cvy specific heat at constant volume

V4 ratio of specific heats, cp/cv

i viscosity
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p . mass density

v kinematic viscosity

k coefficlent of heat conduction

Subscripts:

o reference condition taken at point of maximum velocity
1 any point along body Just outside boundary layer

c compressible

1 incompressible

ANALYSTS

Stewartson's Transforms

Stewartson (ref. 6) showed that the equations governing the behavior
of two-dimensional leminer boundary leyers in a compressible flow are
identical to those governing their behavior in an incompressible flow if
the variables in the two planes are related by the following transforma-
tions:

Y
Ji1 = 1 f ¢ L dye (l)
aofvo ¥ 0 Po
37-1
Xe 1o\ T ‘
X =\/; (g%) dxe (2)
Uy 2o U (3)
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where xp, Ye, Ue and xi, yi, Ui are the coordinates and the velocity

Just outside the boundary layer in the compressible and incompressible
planes, respectively. The subscript o refers to some convenient refer-
ence condition and the subscript 1 refers to conditions at a variable
point Just outside the boundary layer. The detailed derivation of the
incompressible-boundary-layer equation from the compressible equations
with the use of transforms (1) to (3) is treated in reference 6.

The transformation of the compressible-boundary-lsyer equation to
an equivalent incompressible-boundary-layer equation with the use of
transforms (1) to (3) depends upon the following assumptions: The
boundary is thermally insulsted, the viscosity is proportional to the
absolute temperature, and the Prandtl number cpu/k of the fluld is
unity. By assuming the boundary thermally Iinsulated, the basic problem
of motion of the compressible boundary layer is isolated from extraneous
problems associated with heat transfer through the boundary surface.

The assumption that the Prendtl number is unity means that the stagna-
tion temperature is reached at the wall. The Prandtl number for air,
however, is actually about 0.715 (ref. 4); therefore, the temperature
near the wall is lower than that predicted. Since the viscosity
increases with the temperature, the assumption that the Prandtl number
is unity would indicate that the effects of viscosity are overestimated.
With regard to the remaining assumption that the viscosity is proportional
t0 the gbsolute temperature, experiments have shown that the viscosity
for air varies as the eight-ninths power of the absolute temperature
between 90° and 300° Kelvin (ref. 4). Thus, this assumption also results
in an overestimation of the effects of viscosity.

Von Doenhoff's Method

Since the transforms (1) to (3) permit the expression of the com-
pressible laminar boundary layer in terms of an equivalent incompressible
laminar boundary layer, it is apparent that all methods for calculating
the laminer separation point in incompressible flow are equally applicable
in the case of compressible flow. The laminar separation point is

defined as the point along the surface at which §3.= O at y =0. O0Of

all methods availeble for calculating the laminar separation point in
incompressible flow, that due to Von Doenhoff (ref. 3) is perhaps the
simplest over-all method to apply and is used herein as a basis for
developing a method for rapidly estimsting the laminsr separation polnt
in a compressible flow.

With the use of the theory developed by Von Kermsh and Milliken for
computing the separation point of a leminar boundary layer, Von Doenhoff
calculated the laminar separation point for a series of velocity dis-
tributions which consisted of a region of uniform velocity (flat-plate
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flow) followed by a region of linearly decreasing velocity. These
calculations were generalized to the case of bodies with velocity dis-
tributions of arbitrary shape on the basis of the fundamental assump-
tlion that the shape of the boundary-lasyer velocity distribution at the
point along a body at which the outside velocity is a meximum, that is,
at the point of application of the adverse velocity gradient, is very
nearly the same as that of a Blasius flat-plate distribution. Thus,
the condition of the boundary layer at the point of application of the
adverse velocity gradient can be represented by the flow over an equiva-
lent length of flat plate with a uniform velocity equal to the maximum
velocity. The assumption was also made that, for purposes of estimating
the laminar separation point, any velocity gradient likely to be encoun-
tered could be approximated by a straight line. Von Doenhoff presented
the results of his calculations in the form of the decrement in velocity
necessary to cause separation Aﬂil/Uio as a function of the nondimen-
sional velocity gradient ¥Fy = —= ——=, where Lj 1is the equivalent
Uiy dxg
flat-plate length, Ui, 1s the maximum velocity, and dUi;/dx; dis the
velocity gradient. The relationship between AUil/Uio and Fy gilven

in reference 3 1s presented herein as figure 1. The equivalent length
of flet plate corresponding to the flow at the point of application of
the adverse velocity gradient can be found with the use of the following
equation (ref. 3, eq. (1)):

Ei=/;xi§/ci 1_11_1)847(1(}%) ”

c
i Uio

where Uil/Uio is the velocity ratio at any point on the body and the

integration is carried from the beginning of the flow to the point of
application of the adverse gradient. Equation (4) was obtained from

an integration of the Von Kérmén momentum relstion by making the
assumption that the boundary-layer velocity distribution at every point
along the body in the region of accelerating flow 1s the same as a
Blasius flat-plate distribution. Calculations of the laminar separa-
tion point on the NACA 0012 airfoil at zero 1ift made by the use of

Von Doenhoff's rapid method end calculations made by the use of the more
eleborate Von Kdrmen-Millikan theory are shown in reference 3 to agree
very closely.
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Application of Stewartson's Transforms to Von Doenhoff's Method Y ;

In order to find the position on a body at which leminar separation ‘
occurs, the distribution of velocity outside the boundary layer and the ,
Mach number at some typical point must be known. With this information, ;
the laminar separation point can be calculated through the direct appli-~
cation of transforms (2) and (3) and Von Doenhoff's relation given in
figure 1. Although relatively easy to apply, this method does involve
a rather tedious point-by-point transformation from the compressible to
the equivalent incompressible plane.

For this reason, & more rapid procedure has been developed for
estimating the separation point of a compressible laminar boundary
layer. This procedure consiste essentially in the direct application
of Von Doenhoff's method to the compressible velocity distribution, the
effect of Mach number being accounted for by a simple multiplying fac-
tor applied to the measured velocity gradient in the compressible plane.

Consider the velocity gradient dUc/dxc in the compressible plane. )
3r-1
al 7—1
From equation (2) it can be seen that dxj = (= dx, and equation (3)
(o]

states that Uil Uc Consequently, the compressible and incompres- -
l .

1’
sible veloclty gredients are related as follows:

or

2o
dUil U d(EI) 8o dUcl 1 A
axy €1 dxe 8y dx, 37-1
7-1
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If the reference velocity of sound agy 1s taeken at the point of maximum
velocity Uco, that is, at the point of application of the adverse veloc-

ity gredient, then U, = Ui, and

Uil) ao) <?°l)
a af2e a
(ﬁ'i— _ Ve (al L% Veo/| 1

] 5
axy U, dxe Bl dxg 37-1 ()

ﬂ)”l
(&

By the use of the one-dimensional energy equation, the terms al/ao and
8,
d(;i) dx, can be written in terms of the Mach number M, and the

veloclty ratio Ucl/Uco:

2
81 r-1.2 Ucy
= =11 1 - == 6
ao + -—2—- Mo (Uco ( )
and
U
af 2o LS VR e %o
a1 z Ucy e
- (7
c 5 3/2
7 1 2 Ucl
1+ M2l - [ —=
Uco

An examinstion of equations (5) to (7) indicates that a linear velocity
distribution in the compressible plane transforms into & nonlinear dis-
tribution in the equivalent incompressible plane. The basic assumption
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is made, however, that the determination of the approximste leminar
separation point in the equivalent incompressible plane can be made
from a knowledge of the transformed adverse velocity gradient at the
point of meximum velocity. This assumption presupposes that there is
a discontinuity in the compressible veloclty distribution at the point
of application of the adverse gradient or, at least, that the veloclty
distribution can be approximated in this manner. On the basis of this

a
assumption, E% =1.0 and

Uc
1
) =)

=, 7 o & (8)

Substitution of equation (8) into equation (5) and the value 1.0 for
the terms Ucl/Uco and ao/al yields the following relation:

dxy

T
ﬂ.=<1+7;lmoz>dxc° (9)
C

Thus, the value of the velocity gradient at the point of maximum veloc-
ity in the incompressible plene is obtalned by multiplying the measured
value of the velocity gradient in the compressible plane by the fac-

7 ; = Moz, where it should be remembered that M, is the Mach

number at the point of application of the adverse gradlent in the com-
7 - 1
2

tor 1 +

pressible plane. The factor 1 + Moz is plotted as a function

of Mach number in figure 2.

The velocity gradient in the equivalent incompressible plane (eq. (9))
must be made nondimensional in terms of the equivelent flat-plate length
in the incompressible plane if it is to be used with the relation given
in figure 1 for finding the velocity recovery before laminar separation
occurs in an incompressible flow. The equivalent length of flat plate in
the incompressible plane can be determined from the relation
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8.17
1o (U4
Li =‘jrx ——l) Cax (10)
0 (Uio t

or, In terms of variasbles in the compressible plane, from the relation

37-1
8.17  8.17 Y1

wef () @) @ e

37 - 1
y -1

For alr, y = 1l.4; therefore, = 8.0 and equation (11) reduces to

o)
Li =

U 8.17 0.17
[¢]
(ﬁ‘l‘> (2) o (12)
0 Co

ay

Equation (12) can be used directly with the compressible velocity distribu-
tion to determine Lj. In many cases, however, it would appear that the
g \0.17
0
value of (——)
8
on Lj. In this case, the equivalent flat-plate length Ljy can be

determined from the equation

would be g0 near unity as to have a negligible effect

8.17

Ue
Li'—'fxco —L ) ax, (13)
Uco

0

The complete expression for the nondimensional velocity gradient in the
equivalent incompressible plane in terms of variables in the compressible
plane is therefore
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U, & 2 0 JUco axe

dau -1 Ly 4du
Ly iy 1+ 4 Mbé\ 1 c1 (14)
Ui, dxq

c

In the determination of Lj and -—jiyéxc the value of x, can, of
Ue
o

course, be expressed in terms of a reference length in the compressible
plane.

The determination of the laminar separation point corresponding to
a lknown velocity distribution at a given Mach number Involves the fol-

lowing steps:

(a) Graphical measurement of the velocity gradient dUc/dxc in
the compressible plane. This process may require fairing of the given

velocity distribution in such a way that the adverse velocity gradient
begins at a distinct point and is approximated by a straight line.

(b) Calculation of the equivalent flat-plate length by the use of
equation (13).

y -1

(c) Determination of the factor 1 + sz from figure 2.

The nondimensional velocity gradient in the equivalent incompressible
plane may then be determined by the use of equation (14). The velocity
ratio corresponding to laminar separation in the incompressible plane
may be found from the curve of figure 1 which expresses the velocity
decrement necessary to cause laminer separation in terms of the non-
dimensional velocity gradient. The velocity ratio corresponding to
laminar separation in the compressible plane is found with the use of
Uy _ap o1
Ui, 81 U,
UCl/UCo for different Mach numbers is plotted in figure 3.

the relation The relationship between Ui /Ui, and

In some cases, considerable fairing of the given velocity distribu-
tion may be required in order to obtain what appears to be a reasonable

c
measure of d'ff;%)/éxc. Under such circumstances, the position of the
co B

calculated laminar separation point with respect to the given velocity
distribution may indicate that a somewhat different fairing of the
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velocity distribution would give a more realistic approximation of that
portion of the velocity gradient along which laminar separation occurs.
A second calculation of the laminar separation point may then be
indicated.

Comparison With Results of Previous Analyses

The effect of Mach number on the position at which laminar separa-
tion occurs in a boundary-layer flow progressing against a linearly
decreasing velocity from the leading edge has been investigated by
Howarth (ref. 4) who employed a Von Karmen-Pohlhausen type of anslysis,
and by Stewartson (ref. 6) who applied his transforms to the incompres-
sible solution developed by Howarth in 1938 (ref. 1). This type of
velocity distribution has a value of F. equal to zero since the
equlvalent length of flat plate 18 zero. In order to provide a com-
parison between the method of the present investigation and those used
in references 4t and 6, the leminar separation point has been calculated
by the method presented herein for the case of F, equal to zero for
a range of Mach number. The results of these computations are presented

in figure 4 together with the results obtained by Howarth and Stewartson.

Examination of figure 4 indicates that considerable difference exists
at all Mach numbers between the predictions of the three methods. For
zero Mach number, the value of the decrement in velocity ratio of 0.12
glven by Howarth in reference 1 1s probably the most exact. The magni-
tude of the differences between the three methods, however, appears to
be roughly the same for all Mach numbers. This result can be seen more
clearly in figure 5 in which the difference in AUcl/Uco at Mach num-

ber zero and at some arbitrary Mach number is plotted against Mach num-
ber. The trends shown in figure 5 indicate that the predicted effect
of Mach number on the laminar separation point as determlined by the
method of the present investigation 1s in substantial agreement with
the results obtalned by Stewartson and Howarth for the case of linearly
decreasing velocity from the leading edge.

EFFECT OF MACH NUMBER ON THE LAMINAR SEPARATION POINT

In order to show the effect of Mach number on the position of
laminar separation for a series of values of F., the nondimensional
compressible veloclty gradient, calculations have been made for Mach
numbers verying from O to 10 and for nondimensional compressible veloc-
1ty gradients F, varying from O to -0.12. These calculations are for
velocity distributions represented by a region of uniform velocity equal
to the maximm velocity followed by a region of uniformly decreasing
velocity. The results of these calculations are presented in figure 6
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and show that the velocity recovery obtainable before laminar separation
decreases &8s the Mach number increases for all nondimensional velocity
gradients. For a given welocity gradient, therefore, the laminar separa-
tion point moves forward as the Mach number increases. Figure 6 also
shows that the shape of the curves of velocity recovery against Mach
number is not influenced to any large extent by the value of the velocity

gradient.

It is important to point out that the individual curves presented
in figure 6 show the effect on the laminar separation point of increasing
the Mach number for fixed values of the velocity gradient. The problem
of most practical interest, however, 1s that of a body having fixed
geometry. In this case, the velocity gradients vary as the Mach number
varies. Thus, when the laminar separation point on a given body for
different Mach numbers is calculated, the value of the compressible
velocity gradient F. varies with Mach number. In general, adverse
velocity gredients become steeper as the Mach number increases so that,
for a given body, the forward movement of the laminar separation point
with increasing Mach number would be greater than is indicated in fig-
ure 6 for a given velocity gradient.

A word of caution should be added with regard to the type of flow
field to which the method developed herein should be epplied. It will
be recalled that the method developed is based on the classical boundary-
layer assumptions. These assumptions state that the rate of change of
velocity in the x~direction must be small with respect to its rate of
change in the y-direction. The method obviously cannot be applied in
the vicinity of a discontinuity in velocity (pressure) such as that
associated with the presence of a shock wave.

CONCLUDING REMARKS

A method has been developed for rapidly estimating the separation
point of a leminar boundary layer in a compressible flow. The method
consists of an extension of Von Doenhoff's simplified solution for the
incompressible case (NACA TN 671) and makes use of a set of transforms
derived by Stewartson (Proc. Roy. Soc., 1949) which permit, under cer-
tein assumptions, the expression of compressible laminar layers in terms
of equivalent incompressible laminar leyers. The method developed is
generally appliceble to any two-dimensional flow in which the claseical
boundary-layer assumptions are satisfied. The dependence of the method
upon the boundary-layer assumptions, ‘of course, means that 1t should
not be applied to determine whether the pressure rise through a shock
wave causes separation. )
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Calculations of the laminer separation point for a wide range of

Mach number and velocity gradient indicate that, for all velocity
gradients, the amount of velocity recovery possible before laminar
separation occurs decreases as the Mach number Iincreases.

Langley Aeronautical Laboratory,

National Advisory Committee for Aeronautics,
Langley Field, Va., November 19, 1952.
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